Sunday, June 5, 2016

Bluetooth Le Gatt example to link with Arduino/Genuino 101

This post show how to run the Android Bluetooth Le Gatt example Code to link with Arduino/Genuino 101.

The Arduino/Genuino 101 board contains the Intel® Curie™ Module. The 101 adds Bluetooth Low Energy capabilities and has an on-board 6-axis accelerometer/gyroscope, providing exciting opportunities for building creative projects in the connected world. More information about the technical specifications and documentation can be found on the Arduino/Genuino 101 main page.

In Arduino/Genuino 101 board, program with example:
> File > Examples > CurieBLE > CallbackLED

This example setup Arduino/Genuino 101 as Bluetooth LE device (named "LEDCB") with service with UUID "19B10000-E8F2-537E-4F6C-D104768A1214" and create switch characteristic allowing remote device to read and write, with UUID "19B10001-E8F2-537E-4F6C-D104768A1214". We need the UUIDs in future examples.

So I copy here for future reference:
  Copyright (c) 2015 Intel Corporation. All rights reserved.

  This library is free software; you can redistribute it and/or
  modify it under the terms of the GNU Lesser General Public
  License as published by the Free Software Foundation; either
  version 2.1 of the License, or (at your option) any later version.

  This library is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  Lesser General Public License for more details.

  You should have received a copy of the GNU Lesser General Public
  License along with this library; if not, write to the Free Software
  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-
  1301 USA

#include <CurieBLE.h>

const int ledPin = 13; // set ledPin to use on-board LED
BLEPeripheral blePeripheral; // create peripheral instance

BLEService ledService("19B10000-E8F2-537E-4F6C-D104768A1214"); // create service

// create switch characteristic and allow remote device to read and write
BLECharCharacteristic switchChar("19B10001-E8F2-537E-4F6C-D104768A1214", BLERead | BLEWrite);

void setup() {
  pinMode(ledPin, OUTPUT); // use the LED on pin 13 as an output

  // set the local name peripheral advertises
  // set the UUID for the service this peripheral advertises

  // add service and characteristic

  // assign event handlers for connected, disconnected to peripheral
  blePeripheral.setEventHandler(BLEConnected, blePeripheralConnectHandler);
  blePeripheral.setEventHandler(BLEDisconnected, blePeripheralDisconnectHandler);

  // assign event handlers for characteristic
  switchChar.setEventHandler(BLEWritten, switchCharacteristicWritten);
// set an initial value for the characteristic

  // advertise the service
  Serial.println(("Bluetooth device active, waiting for connections..."));

void loop() {
  // poll peripheral

void blePeripheralConnectHandler(BLECentral& central) {
  // central connected event handler
  Serial.print("Connected event, central: ");

void blePeripheralDisconnectHandler(BLECentral& central) {
  // central disconnected event handler
  Serial.print("Disconnected event, central: ");

void switchCharacteristicWritten(BLECentral& central, BLECharacteristic& characteristic) {
  // central wrote new value to characteristic, update LED
  Serial.print("Characteristic event, written: ");

  if (switchChar.value()) {
    Serial.println("LED on");
    digitalWrite(ledPin, HIGH);
  } else {
    Serial.println("LED off");
    digitalWrite(ledPin, LOW);

In Android side, load with example code of Bluetooth Le Gatt:

How it run:

This demo haven't show any real function indeed. In coming posts, I will TRY to implement my own example app (with re-using part of the Bluetooth Le Gatt example) to control and read state from Genuino 101. Currently, I don't know how much I can.

No comments: